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Abstract— This paper is devoted to some Mean
Field Games (hereafter MFG) modeling of hu-
man crowds behavior. More precisely, we study 2-
population dynamics (each of whom consisting of
a continuum of individuals) with opposit interests.
We focus on the crowd aversion case inside the
group and also onto the other group (xenophobia in
some cases). We write a macro-Nash problem between
the two populations, then we give an existence and
uniqueness result and characterize optimal points as
MFG solutions. Finally we provide a simple gradient
descent method to approximate the solutions and
show some simulations.

I. INTRODUCTION

MFG have been recently introduced by Lasry &
Lions ([9], [10], [11]) and seem to be very useful
to model big groups interactions with ”intelligent”
individuals (control aspects). To the best of our
knowledge there exist very few papers on the topic
(MFG and human crowds), e.g. the works of the
author (see [6]) or Guéant (see [4]). The present
paper is based on [7] and is mainly motivated by
the macroscopic crowd motion models (see the
recent work of Buttazzo, Jimenez & Oudet ([2]),
Carlier & Salomon ([3]), Hughes ([5]), or Maury,
Roudneff-Chupin & Santambrogio ([12]) for a gra-
dient flow setting). Nevertheless, in our case, the
MFG use corresponds to discrete-continuous fun-
daments. We adopt, as in [8], the optimal control
point of view of MFG and take fully advantage of
it to prove existence and to approximate solutions,
in particular using the transformation originally
due to Benamou & Brenier (see [1]). But the main
point of this work is that we particularly focus on
the modeling of interactions between two groups
in some xenophobia situation.
The paper is organized as follows. In section II we
briefly motivate the use of MFG for human crowds
and present the problem we consider. Section III
is devoted to the study of optimality conditions
(that is in fact the link between MFG and optimal
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control) and existence. In the next part (section IV)
we provide a numerical strategy to approximate the
solutions, based on a gradient descent method. Fi-
nally, in section V we close with some simulations.

II. TWO-GROUP DYNAMICS: THE
PROBLEM

A. MFG & human crowds

As mentioned in the introduction, it seems to
be very natural to think of MFG to model human
crowds. The MFG setting is well adapted for
several reasons. First it is a micro-macro approach,
being an approximation of N -player differential
games when N tends to infinity (huge systems of
individuals). Secondly it is useful to model interac-
tions between ”intelligent” individuals (or agents),
that is: they are rational players with rational
expectations. The next reason is that MFG describe
non-cooperative equilibrium configurations (Nash
point asymptotics). Note also that since MFG deal
with atomized and anonymous agents (this last
assumption is quite natural in human crowds),
the mathematical framework (optimal control of
Fokker-planck, MFG system) enables numerical
simulations. To fix ideas, we now turn to recall
briefly what are MFG in our crowd motion setting.

We work on the d-dimensional Torus Ω := Td to
avoid boundary difficulties (note that they could be
treated, as in [8] for instance). In the present work,
we focus on the finite horizon framework. Define
then the time-space domain, Q = [0, T ] × Ω. To
simplify, we consider in this paragraph a unique
group (or population) composed with a continuum
of individuals. It is fully characterized during the
time period by the evolutive measure (mt)0≤t≤T
(we will abusively refer to it as a density) with
initial situation m0 given. Then, the agent starting
at x ∈ Ω at the beginning of the period evolves
controlling the drift of the following stochastic
process

dXx
t = αtdt+ σdWt , Xx

0 = x,

where αt is the control parameter, Wt a standard
Brownian motion and σ the given noise.



Her individual problem is then to minimize (over
a certain class of controls α) the quantity

E

[∫ T

0

L(Xx
t , αt) + V [mt](Xx

t )dt+ Ψ(Xx
T )

]
,

where the Lagrangian L stands for a control
and position cost. In what follows we take the
quadratic cost L(x, α) := |α|2

2 (note that it does
not depend on the position). Function Ψ is a final
cost (incentive to reach a certain area) and V is
a state cost (that is a criteria depending on the
mean field created by the others, the density of
agents). This last cost is the key point of the
MFG modeling: individuals anticipate the crowd
evolution (mt)0≤t≤T and take it into account in
their optimization problem. It can be found in
[10], [11], that the solution of the continuum of
individual problems satisfies the so called MFG
system

∂tm− σ2

2 ∆m+ div(m∂pH(x,∇v)) = 0
∂tv + σ2

2 ∆v +H(x,∇v) = V [m],

with in the one hand initial and transversality
conditions: m|t=0 = m0 and v|t=T = Ψ, in the
other hand α := −∇v and H is the Legendre
transform of L. It is well known (see [7], [8], [10])
that when V is the derivative (e.g. the Gâteaux
derivative) of a potential Φ on bounded measures
on Ω, i.e. V = Φ′, then the critical points of the
optimal control problem of Fokker-Planck{

inf
α

∫
Q
|α|2

2 m+
∫ T

0
Φ(mt)dt+

∫
Ω

Ψm(T )

∂tm− σ2

2 ∆m = −div(αm),m(0) = m0,
(1)

are solutions of the MFG system. Note also that it
is a sufficient condition as soon as Φ is convex,
which is the case in this paper. The convexity
corresponds in fact to the crowd aversion (contrary
to attraction situations, see for instance [7], [8]).
In what follows, we call problem (1) a global
optimization problem of a MFG.

B. Writing the Nash problem

Let us focus on the case where two populations
interact inside Ω. We want to study equilibria
between the two groups (typically Nash points as
suggested by Lasry and Lions in [10]). Before
giving the problem of group i, i = 1, 2, let us recall
a classical notation. For any point x = (x1, x2) ∈
R2, and for a fixed coordinate i, we denote by
x−i the element of R, x−i := {x1, x2} − {xi}.
Formally, the global optimization problem (linked
to a continuum of individual problems) of group

i, given the control and the mass evolution of the
other group (i.e. (α−it ,m−it )), reads as:

inf
αi
J iλ(α)

where

J iλ(α) :=
∫
Q

|αi|2

2
mi +

∫ T

0

Φiλ(m1
t ,m

2
t )

+
∫

Ω

Ψimi(T ). (2)

From now on, mi depends on αi, more precisely
it is viewed as a bounded nonegative measure (i.e.
belonging to the setMb(Q,R+)) which is a weak
solution of the Fokker-Planck equation:

∂tm
i − σ2

2
∆mi = −div(αimi),mi(0) = mi

0.

(3)
We distinguish the populations by considering dif-
ferent initial densities mi

0(.) and different final
incentive costs Ψi. However we study the simple
case where the Brownian motion and the noise are
similar for both groups. In the definition of the
criterion (2), the coupling cost we consider is

Φiλ(mt) :=
∫

Ω

(mi
t)

2 + λm1
tm

2
t ,

for a nonnegative real constant λ. This models
of a situation involving individual’s aversion to
the members of her own group and onto the
other group, so that λ stands for a ”xenophobia”
parameter. To see that, note that the individual
mean field criterion is:

Vi[mt](x) = 2mi
t(x) + λm−it (x).

In fact we consider that xenophobia is significant
when the aversion λ to the other group is higher
than the one to the own group (equal to 2). The
Nash problem between the groups is then:

Find α = (α1, α2) such that:
(N ) J iλ(α) = inf

αi∈Mb(Q,Rd)
J iλ(αi, α−i),

for i = 1, 2.

III. EXISTENCE & OPTIMALITY
A. Optimality conditions

In this part we present a characterization of the
Nash equilibria. To do so, let us introduce the MFG
system for two groups: for i = 1, 2,

∂tm
i− σ

2

2
∆mi+ div(mi∇vi) = 0, mi(0) = mi

0,

(4)

∂tv
i +

σ2

2
∆vi +

|∇vi|2

2
= Φiλ(m)′, vi(T ) = Ψi,

(5)



and the joint minimization problem (for the two
groups)

(Q) inf
α=(α1,α2)

Jλ(α) := J1
λ/2(α) + J2

λ/2(α),

under the constraints: mi is a solution of (3), for
i = 1, 2. Note that Jλ is convex if the xenophobia
parameter is not too large, that is λ ≤ 2.
We are now in the position to give the optimality
conditions.

Proposition 1: If λ ≤ 2 then the following
assertions are equivalent:

1) α ∈ Mb(Q,Rd) is a solution of (N ) and m
satisfies (3) for α = α,

2) α ∈ Mb(Q,Rd) is a solution of (Q) and m
satisfies (3) for α = α,

3) (m, v) is a solution of the MFG system (4)-
(5), with α = α = ∇v.

If λ > 2 then it is only necessary i.e. 2. ⇒ 1.,3.

A proof of this statement is based on classical
arguments of differential calculus and can be found
in [7].

B. Existence

If there exists a solution of problem (Q), then
proposition 1 ensures the existence of a Nash
point between the two groups. Before giving an
existence result, we may reformulate the problem
in a more rigorous way, following [1], [2], [8].
We adopt a vectorial point of view, and use the
following notations:

• Mb(Q,Rd) is the set of bounded d-vectorial
measures on Ω.

• m = (m1,m2) ∈ Mb(Q,R2
+), and for all

x = (x1, x2) ∈ R2
+∗,

1
x := ( 1

x1 ,
1
x2 ),

• q = (q1, q2) ∈ Mb(Q,R2d), and for all y =
(y1, y2) ∈ Rd × Rd, |y|2 := (|y1|2, |y2|2),

• A := {(q,m) ∈ Mb(Q,R2d) ×
Mb(Q,R2

+) :
∫
Q

(∂tu + σ2

2 ∆u)dmi +∫
Q
∇u.dqi =

∫
Ω

Ψimi(T ) − u0m
i
0 , ∀u ∈

C∞(Q) , pour i = 1, 2}.
Let us introduce the (q = αm,m) formulation, i.e.
following [2], the functions

ϕ1(a, b) :=

{
|a|2
2b if (a, b) ∈ R2d × R2

+∗
+∞ else,

ϕ2(b) :=
{
|b|2 + λb1b2 if b ∈ R2

+∗
+∞ else,

and

K(q,m) := K1(q,m) +K2(m),

K1(q,m) :=
∫
Q

ϕ1(
dq

dLd+1
,
dm

dLd+1
)dLd+1,

K2(m) :=
∫
Q

ϕ2(
dm

dLd+1
)dLd+1 +

∫
Ω

Ψ.dm|t=T ,

where Ld+1 denotes the Lebesgue measure in
Rd+1. Then we can rewrite K in a simpler form:

K(q,m) =
{
Jλ(α), if q << m and q = αm
+∞ else.

In this setting, a rigorous formulation of (Q) is

inf
(q,m)∈A

K(q,m), (6)

and we can give the result as announced before.
Proposition 2: If λ ≤ 2 and m1

0, m
2
0 ∈ L2(Q),

then problem (Q) possesses a solution (which is
unique as soon as λ < 2). Moreover there exists a
Nash point i.e. a solution of (N ).

Remark 1: Note that existence does not fail
when adding a constraint of the type m ≤ constant
as in [12].

Given the reformulation (6), the proof is a sim-
ple adaptation of the one obtained by Buttazzo,
Jimenez and Oudet in [2]. A complete proof of this
proposition is provided in [7]. In the next section
we deal with defining a numerical procedure to
approximate the solution.

IV. NUMERICAL SETTING

In this part we introduce the discretization and
a gradient descent method in order to approximate
the solution(s) of problem (N ). More precisely,
we distinguish the cases when the joint problem
(Q) is convex from when it is not. In the convex
setting (i.e. when λ ≤ 2) we describe the gradient
descent that we apply to the joint functional. The
non-convex case λ > 2 (in which the xenophobia
is significant) is more involved but interesting
(we expect non-uniqueness). We then provide an
alternating directions method taking advantage of
the convexity of group i’s problem, given group
(−i)’s evolution.

Gradient First of all, let us write the gradient
formula of the functional. We look at the reformu-
lated problem given by (6). We slightly modify the
point of view considering that the density m is an
affine function of the momentum q. To fix ideas,



the joint problem reads as:

inf
q
F (q) :=

∑
i=1,2

(∫
Q

|qit|2

2mi
t

+Φiλ/2(mt)+
∫

Ω

Ψimi
T

)
,

(7)
where mi, i = 1, 2 solves :

∂tm
i − σ2

2
∆mi = −div(qi) , mi(0, .) = mi

0(.).
(8)

Thanks to a classical differential calculus (see for
instance [7]), it is easy to get the explicit formula
of the gradient

∀(q,m) ∈ A,∀w = (w1, w2) ∈Mb(R2d),

∇F (q).w =
(∫

Q

( qi
mi

+∇θi
)
.dwi

)
i=1,2

, (9)

where θi satisfies, for i = 1, 2,

−∂tθi−
σ2

2
∆θi = − |q

i|2

2(mi)2
+ (2mi +λm−i),

θi|t=T = Ψi. (10)

Algorithm for the convex case Since problem
(7) is convex when λ ≤ 2, we decide to apply
a gradient descent method. We focus on the 2D-
case (d = 2) and take Ω = [0, 1]2 with periodic
boundary conditions.
Let M and N be two positive integers, we define
the time and space steps by dt = 1

N and dx = 1
M .

For (i, j, k) ∈ A := {0, ..., N} × {0, ...,M}2, for
a given function f defined on Q, f ij,k denotes
the numerical approximation of f(idt, jdx, kdy).
Equations (8) and (10) are iteratively solved by us-
ing finite differences, after initializations (m0

j,k =
m0(jdx, kdy) and θNj,k = Ψ(jdx, kdy)), using the
following approximations

∂tf(idt, jdx, kdy) =
f i+1
j,k − f ij,k

dt
,

∆f(idt, jdx, kdy) =
f ij+1,k − 2f ij,k + f ij−1,k

(dx)2

+
f ij,k+1 − 2f ij,k + f ij,k−1

(dy)2
.

At step n, let f (n) :=
(
f
i,(n)
j,k

)
(i,j,k)∈A

. Then the

gradient descent method (hereafter GDM) is the
following:

1) Initialization:
Choose q(0) then compute m(0) by solving (8)
with the finite difference scheme.

2) Step n:

• Compute θ(n) by solving numerically
(10) with q(n−1) and m(n−1), then com-
pute the discretized gradient ∇F (q(n−1))
(formula (9)), using θ(n).

• Compute the descent: q(n) = q(n−1) −
ρn∇F (q(n−1)).

• If ||q(n) − q(n−1)|| <Tol1, then stop the
algorithm (Tol1 is a tolerance threshold
defined by the user).
Else, n = n+ 1.

Note that ρn above is the descent step size, it
is chosen optimal, i.e. minimizing the following:
ρ ∈ [0, 1]→ F (q(n−1) − ρ∇F (q(n−1))).

Alternating directions method for the non-
convex problem The case where aversion to the
other group is significant (λ > 2), for which we
have less theoretical results, also seems interesting.
One of the main goal of the present work is
to obtain numerical simulations in this situation.
Consequently, it is convenient to describe the way
we try to approximate the Nash points between the
groups when λ > 2. To do so we choose an alter-
nating directions method, provided the convexity
of both group i’s problem, given group (−i)’s
evolution:

inf
qi
F i(q) :=

∫ T

0

∫
Ω

|qit|2

mi
t

+ Φiλ(mt)dt+
∫

Ω

Ψimi
T ,

where mi solves (8) for qi, i = 1, 2. One can easily
get the formula of the gradient of F i looking at the
joint case (9)-(10).
In what follows, by writing that we compute q we
also mean that we compute the corresponding m
solution of the discretized versions of the Fokker-
Planck equations (8), for i = 1, 2.
The strategy to approximate the Nash points is to
apply GDM successively to each group. Note that
above, the upper index refers to the group number
and the lower one to the iteration.

1) Initialization:
Choose q1

0 then compute q2
1 with GDM and

q1
0 .

2) Step k > 1:
We know q2

k.
• Compute q1

k then q2
k+1 by using GDM

(with, respectively, q2
k and q1

k).
• If ||qik − qik−1|| <Tol2 for i = 1, 2, then

stop the procedure.
Else, k = k + 1.

V. SIMULATIONS
The GDM shows good convergence results when

the initials densities of individuals are significantly



positive (i.e. mi
0 > constant > 0). This last section

is devoted to the exhibition of some very first tests.
In the next simulations we take T = 1 and σ2

2 =
0.01.

A. Test 1: crowd aversion in a single group

In the first example we focus on a case involving
only one population (m2

0 = 0), i.e. a similar
framework as the one studied by Buttazzo, Jimenez
and Oudet in [2]. Fig. 1 shows the initial density
of agents (centralized around the point (0.1, 0.1))
and the final cost, modeling a strong incentive
for individuals to be in some neighborhood of
(0.5, 0.8) and (0.8, 0.5) at instant T .

(a) Initial density (b) Final cost Ψ

Fig. 1. Data

(a) Density at instant t = 0.06 (b) Density at instant t = 0.5

Fig. 2. Spreading over during the first half

(a) Density at instant t = 0.9 (b) Density at instant T = 1

Fig. 3. Splitting and centralization during the second half

Fig. 2 and Fig. 3 present the mass evolution at
some chosen instants in [0, T ]. More precisely, we
may observe on Fig. 2 a first step corresponding to
a spreading over of m (explained by the aversion
term and the diffusion parameter). Note that the
running time of dispersion is greater than one
half. We then observe in Fig. 3 a split inside the
population so that individuals can converge to the
two attractive areas. Finally, the discrete energy

Fig. 4. Value of F for each iteration

seems to reach quickly the minimum (5 iterations),
see Fig. 4.

B. Test 2: groups interactions

Let us now look at the more interesting case
with two populations. Recall that we look for
Nash equilibria between two groups whose global
optimization problem is (6). We use the procedure
detailed before (starting with group 2). In order
to emphasize the xenophobia behavior we choose
λ = 20 in the definition Φiλ(m1,m2) =

∫
Ω

(mi)2+
λm1m2. We consider a symmetric configuration
and represent the graphs of the initial densities
(mi

0, i = 1, 2) and final costs (Ψi, i = 1, 2)
in Fig. 5. Group 1 is initially centralized around
(0.35, 0.5), group 2 around (0.5, 0.35). Concerning
the final costs the situation is still symmetric since
they model incentives to reach positions in the
neighborhood of (respectively for group 1 and 2)
(0.65, 0.5) and (0.65, 0.5).
With such a situation we are interested in crossing
phenomenon.

(a) Initial densities (b) Final costs Ψi

Fig. 5. Data

(a) Densities at instant t = 0.1 (b) Densities at instant t = 0.4

Fig. 6. Spreading over of m1 and m2



(a) Densities contour lines at
instant t = 0.65

(b) Densities at instant t =
0.75

Fig. 7. Group 2 go through the middle of the domain as some
agents of group 1, nevertheless most of group 2 individuals
transit by the border (periodic conditions)

(a) Densities at instant t = 0.9 (b) Densities at instant T=1

Fig. 8. End of the period evolution

The graphs of both densities are depicted in
Fig. 6. We can notice the same spreading over we
observed in Test 1. However, the most interesting
evolution period is described in Fig. 7. Indeed, we
can see that group 1 gives the priority to group
2 to go to its attractive area passing through the
center of the domain (the shortest road for the
euclidian metric). Some of the individuals of group
1 wait, some others go through the border (periodic
conditions), and the lasts go through the center
(the most congested area). Anyway we note that
group 2 reaches quicker than group 2 its goal.
Looking at Fig. 8, we can check that both group
are finally centralized around the points (0.65, 0.5)
and (0.5, 0.65).
The last remark is that we obtain the opposite (or
symmetric) situation when starting to optimize on
group 1. Then, the symmetry break seems to be a
consequence of this starting choice.

VI. CONCLUSIONS AND FUTURE
WORKS

A. Conclusions

In this work we provide a macroscopic model
for human crowds and groups interactions for intel-
ligent individuals. It is a MFG model also inspired
by [2]. We take advantage of the optimal control
point of view of MFG in order to prove existence

and to develop a numerical approach which con-
sists of a simple gradient descent method. We also
test the algorithm in a case involving xenophobia
between two groups.

B. Future works
To the best of our knowledge this paper is one

of the first works exploring both theoretically and
numerically a MFG approach to model groups in-
teractions and human crowds, so that many things
remain to be done. For instance we think of:
proving the gradient method convergence, testing
its robustness when σ → 0, or taking into account
congestion effects (i.e. considering moving cost of
the type L = |α|2mb with b > 0).
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